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Figure 5. The net magneti-
zation (Mg) resuiting from the
imbalance of hydrogen nucle-
ar dipoles points along Bo but
is small compared with Bo.
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Figure 8. - A, Net magnetization of the sample Mo, initiaily is aligned with the main magnetic field Bo, but it is so small in
comparison to By that it is undetectable. B, A radio-frequency (RF) field applied at the Larmor frequency tips tissue magneti-
zation into the transverse plane, rendering it measurable as transverse magnetization, Myy. C, Measurement of Myy Is possi-
ble because of its precession, which produces a changing magnetic flux linking a properly oriented loop receiver coil. The
changing magnetic flux linking the coil induces an alternating current (AC) (alternating at the Larmor frequency) in the re-
ceiver coil. This alternating current, when amplified and digitized, becomes the signal from which the MR image is recon-
structed.
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Figure 7. TI recovery as a function of TR after a 90°
pulse. Immediately after the 90° pulse, the population of
higher-energy dipoles (antiparallel to Bo, pointing down-
ward) and lower-energy dipoles (parallel to Bo, pointing up-
ward) is equal. As energy is transferred from excited, high-
er-energy dipoles to the surrounding macromolecules, the
longitudinal magnetization approaches its equilibrium val-
ue, Mo, which is a maximum imbalance of dipoles. T1 fora
given tissue is defined as the time delay required after a 90°
pulse for 63% of the tissue magnetization to recover along
the direction of Bo.

= Figure 8. (a) Immediately after a 90° RF |
pulse, the magnetic dipoles of individual nu-
= clei are precessing in phase, and the trans-
verse magnetization vector, Myy, is maximal.
(b) As time progresses, magnetic dipoles lose
phase coherence, some precessing faster and
some slower, due to the local magnetic envi-
ronment. This loss of phase coherence causes
adecrease in the net transverse magnetiza-
tion, with My,’ less than M,,. (¢} As a result,
the signal recorded by the receiver coil de-
creases exponentially in amplitude. T2 is de-
fined as the time required for the transverse
:nagnetization to decay to 37 % of its.original
evel. :
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Figure 13. (a) Acquiring the signal (S) from the selected plane without phase encoding leaves the in-
dividual voxels in each frequency band in phase, so that the measured signal is just the sum of signals
from each voxel. (b) The application of a weak phase-encoding y gradient prior to signal measurement
produces a small amount of phase shift from voxel to voxel, weighting differently the signal from each
pixel in a given frequency band. (¢) Application of a stronger phase-encoding y gradient produces a
greater phase shift from pixel to pixel, again weighting the signals from each voxel differently. (d) With a
sufficient number of planar acquisitions, each with a different degree of phase encoding, and therefore a
different relative weighting, the signals from individual pixels within each frequency band can be re-
solved. The pixel size in the x (frequency-encoding) direction (Ax) is determined by the field of view (FOV)
in the x direction (FOV,) and the number of pixels in the x direction (N¢e). Likewise, the pixel size in the y
(phase-encoding) direction (Ay) is determined by the field of view in the y direction (FOV,) and the num-
ber of pixels in the y direction, which in most cases is equal to the number of distinct phase-encoding
steps (Npe).
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