BioE 1410 - Homework 4

For questions 1 - 3, use the following notation for the coefficients of the respective Fourier series.

- $x(t) \xleftarrow{F_S} a_k$ $y(t) \xleftarrow{F_S} b_k$ $h(t) \xleftarrow{F_S} c_k$ $z(t) \xleftarrow{F_S} d_k$
- **1.** Find all non-zero a_k and b_k for

$$x(t) = \sin(\omega_0 t) + \cos(2\omega_0 t) \qquad \text{and} \qquad y(t) = \cos(\omega_0 t) + \sin(2\omega_0 t)$$

Then, using Parseval's relation, show that the average power of x(t) and y(t) are the same.

2. Given x(t) and y(t) from question 1, find z(t) in each of the following cases first by solving for d_k from a_k and b_k and building z(t) from the Fourier series, and then by solving for z(t) by simple calculus from x(t) and y(t). You should get the same results.

A.
$$z(t) = \frac{dx(t)}{dt}$$
 B. $z(t) = \frac{d[y(t) - 2x(t)]}{dt}$ **C.** $z(t) = \int y(t) dt$

3. Given a system with impulse response $h(t) = \delta(t-1)$ and a periodic x(t) = x(t-2) with a

Fourier series

$$a_0 = 17$$
, $a_1 = 3$, $a_{-1} = 3$, $a_2 = 2j$, $a_{-2} = -2j$, $a_k = 0$ for all other k,

What is x(t)? Find the Fourier series of the output y(t). What is y(t)?

Hint: $x(t-\tau) \leftarrow F_s \rightarrow e^{-jk\omega_0\tau} a_k$ think about the phase shift of each harmonic.

4. Find all the non-zero a_k terms in the Fourier Series for the following signals.

Also find the fundamental frequency ω_0 and the fundamental period T_0 .

A.
$$x(t) = \sin(4\pi t)$$

B.
$$x(t) = 4 - \cos(2\pi t) + 3\sin(6\pi t)$$

- C. $x(t) = \cos(4\pi t \pi)$
- **5.** What is the average power of each signal in question 4, using the Fourier series a_k and Parseval's relation?

6. Using the Fourier series you found in question 4A for $x(t) = \sin(4\pi t)$, let y(t) = 2x(3t).

Using the fact that $x(\alpha t) \xleftarrow{F_s} a_k, \ \alpha > 0$

Find the following:

- A. All the non-zero b_k terms in the Fourier Series of y(t)
- **B.** The fundamental period T_0 of y(t)
- **C.** The fundamental frequency ω_0 of y(t)
- **D.** The average power of y(t)

7. Find all non-zero a_k and for

$$x(t) = 2 - \sin(\omega_0 t) + \cos(2\omega_0 t) - 2\sin(2\omega_0 t)$$

Then, using Parseval's relation, find the average power of x(t).

Sketch the real and imaginary parts of the Fourier Transform $X(\omega)$ labeling all axes and coordinates.

Is the total energy of x(t) finite or infinite?

8. Given that $x(t) = \sin(2\pi t)$ and $h(t) = -2\partial(t)$, write equations for the Fourier transforms $X(\omega)$ and $H(\omega)$ and graph both spectra (real and/or imaginary parts, as needed) labeling all axes and coordinates. Write an equation for the output of the system y(t) = x(t) * h(t)and its Fourier transform $Y(\omega)$, and graph $Y(\omega)$.

Show that the Fourier Series is

 $a_{k} = \frac{1}{2} \operatorname{sinc}(\frac{k}{2})$ (hint: integrate from $-\frac{T_{0}}{4}$ to $\frac{T_{0}}{4}$, the only non-zero part of the period $\frac{T_{0}}{2}$ to $\frac{T_{0}}{2}$) (4) \times (t) \rightarrow h, (t) \rightarrow h_a(t) \rightarrow y(t)

Given that $h_i(t)$ differentiates and $h_a(t)$ integrates, find $H_i(w)$, $H_a(w)$ and H(w), where h(t) is the overall system. What is h(t) and why?

(5) A system that exhibits first order decay h(t) = e^{-at} u(t), a>0 what is the spectrum H(w)? Does it favor high or low frequencies?

(G) Given x(t) = cos(st) + 2 sin(st) Find X(w) and Y(w) if y(t) = x(-t) (hint: since x(t) is real, think complex conjugates). Explain in terms of cos and sin being even and odd respectively.