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1. The Phasor — What is a complex exponential?

We need calculus. Calculus is the engine behind Newton’s laws, Maxwell’s
equations, chemical rates of reactions, and many other essential relationships in the
universe. Calculus has two fundamental operations, differentiation and integration,
which are really opposite expressions of the same thing. Consider the functions f(¢#) and

g(¢) such that

f(t) = dfT(;). (1-1)

Differentiation is the opposite of integration, put mathematically as
g = [ f(r)dr. (1-2)

As shown in Figure 1, g(¢) is the area under f(t) between T=- and T=¢. As ¢ is
moved to the right (the arrow in Figure 1), the rate at which that area g(¢) changes is
simply f(7) itself. The derivative of the integral is itself.

1

area = g(t)

~
a¥

Figure 1-1. The derivative of the area g(#) as f moves to the right is f'(¢) .

To solve real-world relationships in calculus, which are typically posed as
differential equations, we need exponentials. Exponentials are nice because they reduce
multiplication to addition. We learn in grade school that raising x to an integer power
permits us to add exponents,

x2-xd=x° (1-3)
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Really, we are just keeping track of how many times x has been multiplied by itself:
(x-x)-(x-x-x)=(x-x-x-x-x), 2+3=5. (1-4)

But what does it mean to raise x to the 1.5"™ power? This is not quite as easy to grasp.

How do we multiply x by itself 1.5 times? Here we are taught that the exponential

function x' connects the integer powers of x into a smooth curve, for any real number ¢.

So for example, when x =2 the integer powers of 2 are connected by the continuous
function 2’ as shown in Figure 2.

+ The exponential x' is still endowed with the

N ability to add exponents for a given base x, even when ¢

is not an integer,

x1.5 . x3.2 — x4,7 . (1_5)

though we may have lost the childhood clarity of simple
counting and we take it on faith. The word calculus
means stone in Latin, and it would be nice if calculus
were really as simply as counting stones. We will do the
best we can.

What about the derivative of an exponential?
When taking the derivative of x> with respect to x we
are taught that

N NN

Figure 1-2 Continuous function
2! exponential connects the

integer powers of 2’

ak’) .. . (1-6)
dx

This is shown, quite believably, by recalling that dx is the limit of Ax as Ax — 0. Thus,

d6?)_ o GHAD -x L oxAxe (), 1

dx Ax Ax
Ax —0 Ax —0

We generalize this to any integer power of x in the basic rule

= nx (1-8)

of which Equation (1-6) is just a special case.
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What happens when the variable is not the base, as in x?, but rather when it is the
exponent, as in 2'? What is its derivative d2'/d:? If we examine 2" as ¢ assumes the
values 0,1, 2, 3, ..., and compute for the change A(z’) at each value of ¢

t 0 1 2 3 4
2! 1 2 4 8 16....
A A N A U A N
A(Z’)/At 1 2 4 ...

Figure 1-2 The change in the exponential 2’ is itself and exponential.

we find that A(2') /A is also an exponential. Indeed, it the same exponential but

somewhat shifted to the right. In a similar fashion, it turns out that the derivative of any
exponential is also an exponential.

But to solve differential equations, we need to find a particular value for the base, the
number we call “¢”, to serve as the base for an exponential that will satisfy the equation

d(e’) . (1-9)
dx

The function e’ is the only function whose derivative is itself. We saw that the derivative
of 2 lagged a little behind it (to the right). Intuitively, e will have to be a little bigger
than 2, to make it go up faster.

How do we find the actual numerical value of ¢? We can express e’ without having
¢ in the exponent but only in the base, in which case we know how to find the derivative,
as already described. Let us assume there is some polynomial expression for e’:

t 0 1 2 3
e' =ayt +at +a,t” +at ....=Eant”. (1-10)
n=0

Simply by knowing the derivative of e’ is itself, we can solve for the values of all the
a,’s, in the following manner.

Setting ¢ =0 leaves only the zero-order term,
e =ayt , (1-11)

and so it must be that a, = 1. When we take the derivative, the first order term a,¢' must

become the zero order term, so it must be that @, =1 as well. Similarly, when we take
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the derivative, the second order term a,t* becomes the first order term, and so on. The
solution for the entire polynomial ends up looking like

SIS PUN PN PSR S I t4....=2lt” (1-12)
2 2:3 2-3-4 n!

n=0

because each term must becomes the term to the left when the derivative is taken. (The
zero order term a,x’ is a constant, so its derivative is zero. What is the value of e ?

Setting x =1 yields,

1 1 1
e=1+1+—+—+—.... (1-13)
2 6 24

which appears to be somewhat more than 2%, and indeed is 2.71828182846...., the
irrational, yet highly esteemed, constant at the heart of differential calculus.

This can be illustrated by showing that the slope of ¢’ is equal to itself (Figure 1-3A), or
that the area under e’ is equal to itself (see Figure 1-3B) if you count the squares I think
you will agree.
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Figure 1-3 A. The slope of e’ is everywhere equal to itself.
B. The area under e’ from — ®© to any value of 7 is e’.
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