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Medial-Node Models to Identify and Measure
Objects in Real-Time 3-D Echocardiography

George D. Stetten,*Associate, IEEE, and Stephen M. Pizer,Senior Member, IEEE

Abstract—A method is proposed for the automatic, rapid,
and stable identification and measurement of objects in three-
dimensional (3-D) images. It is based on local shape properties
derived statistically from populations of medial primitives sought
throughout the image space. These shape properties are measured
at medial locations within the object and include scale, orienta-
tion, endness, and medial dimensionality. Medial dimensionality
is a local shape property differentiating sphere-like, cylinder-like,
and slab-like structures, with intermediate dimensionality also
possible. Endness is a property found at the cap of a cylinder
or the edge of a slab. In terms of an application, the cardiac
left ventricle (LV) during systole is modeled as a large dark
cylinder with an apical cap, terminated at the other end by a
thin bright slab-like mitral valve (MV). Such a model, containing
medial shape properties at just a few locations, along with the
relative distances and orientations between these locations, is
intuitive and robust and permits automated detection of the
LV axis in vivo, using real-time 3-D (RT3D) echocardiography.
The statistical nature of these shape properties allows their
extraction, even in the presence of noise, and permits statistical
geometric measurements without exact delineation of boundaries,
as demonstrated in determining the volume of balloons in RT3D
scans. The inherent high speed of the method is appropriate for
real-time clinical use.

Index Terms—Core atom, left ventricle, medial dimensionality,
3-D ultrasound.

I. INTRODUCTION

SHAPE identification and measurement in medical im-
ages are difficult but worthwhile goals. Nowhere is this

more evident than in the automated analysis of cardiac left
ventricular (LV) volume using real time three-dimensional
(RT3D) ultrasound [1]–[6]. RT3D ultrasound is a new imaging
modality that electronically scans a volume in 3-D, using
a matrix array [Fig. 12(b)] instead of a conventional linear
array [Fig. 12(a)]. Because of the large number of 3-D im-
ages produced every second by RT3D ultrasound, manual
analysis of the data is extremely labor intensive. This makes
RT3D ultrasound a prime candidate for automated analysis.
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Ultrasound, in general, presents a significant challenge to
automated analysis because of high noise, low resolution, path
dependence, and nonrectilinear coordinates. RT3D ultrasound,
in particular, suffers from especially high noise and low
resolution.

While an exhaustive comparison of the numerous methods
developed for object recognition and measurement is beyond
the scope of this paper, the majority of researchers in recent
years have chosen deformable models for locating the cardiac
ventricle, based either on contours [two-dimensional (2-D)]
or surfaces (3-D). Deformable models constitute a top-down
approach, in which an iterative search for likely boundaries
is constrained by prior knowledge about the expected shape.
For a review of deformable models, see McInerney and
Terzopoulos [7]. Methods of finding and measuring the LV
using 2-D data from conventional ultrasound scanners have
concentrated on deformable contours [8]–[12]. Deformable
surfaces have been applied to mechanically scanned 3-D
echocardiographic data by at least one researcher [13], but our
own experience with applying deformable methods to RT3D
ultrasound, with its even lower data quality, has not produced
encouraging results [14]. The difficulties we encountered along
this avenue led us to review bottom-up approaches based on
the measurement of geometric image properties.

One such approach has yielded particularly successful fully
automatic detection of the LV in 2-D ultrasound data. In
this method circular arc matched filters are used to find
cross sections of the ventricle [15]. Other successes have
been reported in 2-D ultrasound using a version of template
matching to find the center of the ventricle and then fuzzy
reasoning to find the boundary [16]. In recent research along
the same lines, we have developed a Hough transform ap-
proach, using circular edge filters, that yields fully automated
measurement of balloons in RT3D data [17], [18]. All of
these approaches possess fundamentally medial aspects, that
is, they relate multiple boundary points to common central
points deep within the object. Our preliminary success with the
RT3D ultrasound data led us to explore a generalized medial
approach that extends to more complicated shapes and that
differentiates medial relationships between boundary points
into several fundamental types.

The lineage of the medial approach may be traced to
the medial axis (otherwise known as the symmetric axis or
skeleton) introduced on binary images by Blum and developed
by Nagel, Nackman, and others [19]–[21]. Pizer has extended
the medial axis to gray-scale images, producing a graded
measure called medialness, which links the aperture of the
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boundary measurement to the radius of the medial axis to
produce what has been labeled a core. A core is a locus in a
space whose coordinates are position, radius, and associated
orientations [22], [23]. Methods involving these continuous
loci of medial primitives have proven particularly robust
against noise and variation in target shapes [24]. Determining
locations with high medialness and relating them to a core has
been accomplished by analyzing the geometry of loci resulting
from ridge extraction [25]. Models including discrete loci of
medial primitives have also provided the framework for a class
of active shape models known as deformable m–reps (sampled
medial representations) [26], [27].

The objective of the work reported here is to build on
these ideas to produce a method capable of analyzing 3-D
shapes to identify and measure structures in the heart, using
RT3D ultrasound. The approach aims to extract the scale,
orientation, and dimensionality (shape type) of sections of
anatomical structures by statistical analysis of populations of
medial primitives. In particular, the primitives are identified by
first searching for individual boundary points throughout the
image in an initial sweep and then matching pairs of boundary
points to form what are called core atoms. A core atom is the
smallest individisible unit for detecting medialness, namely, a
single pair of boundary points. Core atoms tend to cluster
along a medial ridge with greater stability than individual
boundary detectors, allowing for robust statistical analysis of
the core and the underlying figure. Core atoms have already
been developed for analysis of uncluttered 2-D shapes [28].
The techniques are generalized here to 3-D and augmented
to provide for spatially sampled populations of core atoms to
differentiate local portions of the core.

II. M ETHODS

The methods developed in this paper will be discussed in
terms of a particular goal, the automated determination of the
apex-to-mitral-valve (AMV) axis of the systolic LV. During
systole, the LV is basically a large cylinder with an apical
cap at one end and a slab-like mitral valve (MV) at the other
(we limit ourselves here to apical scans and to times when the
MV is closed). This model of the LV is shown in Fig. 13(a).
The overall method, which we will develop in detail below,
is outlined in Fig. 1. Although applied here to detecting the
AMV axis, the underlying method is generally adaptable and
expandable to other more complicated anatomical structures.

A. Finding Core Atoms

A core atom is defined as two boundary points and
that satisfy particular requirements (described in detail

below), guaranteeing that the boundaries face each other. A
core atom can be represented by a single vector from
the first boundary point to the second. A core atom is said
to be located at a center point midway between the boundary
points [see Fig. 2(a)]. The medialness at the center point is
high because the boundariness at both boundary points is
high and because the boundary normals face each other. Core
atoms carry information about orientation, width and position,

Fig. 1. Overview of method to find the apex-to-mitral valve axis. Letters
correspond to subsections in Section II.

(a) (b)

Fig. 2. (a) A core atom consists of two boundary points that face each other
across an acceptable distance and a center point at which the core atom is
said to be located. (b) The search area (gray) for boundary pointb2 depends
on boundary normal~n1 and the expected distance between the boundaries.

permitting populations of core atoms to be analyzed in these
terms.

Unlike some medial models, the angle between the lines
from the center point to each respective boundary point for
a core atom is fixed at 180 as with Brady [29]. A certain
flexibility in relative orientations of the associated boundaries
away from parallel is allowed. Boundariness is sampled on a
rectilinear grid to select a population of boundary pointsat
locations with orientations . Any kind of boundariness,
including those based on gradient, variance, or texture analysis,
can be used to form core atoms, provided an orientation is
established for each boundary point. In general, the aperture
of the boundariness detector is held proportional to the distance
between the boundaries of the desired core atoms. The strength
inherent to the statistics of populations is meant to counteract
the weakness of the preselection of boundary points.

Core atoms are created from a population of candidate
boundary points by finding pairs that satisfy the following
three criteria.
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1) The magnitude of the core atom vector , i.e., the
distance from one boundary point to the other, must be
between and

(1)

The core atom vector can be oriented either way since
the order of the boundary points is arbitrary.

2) The boundary points must have sufficient face-to-
faceness defined as

(2)

( denotes normalization, Since and
are normalized to lie between1 and 1, their product

must also lie between 1 and 1. Values for near
1 occur when the boundaries face toward (or away

from) each other across the distance between them. A
threshold for acceptable face-to-faceness is set within
some error such that

3) implies that and are both positive,
or both negative. The sign of (or is called the
polarity. The appropriate polarity is either or ,
depending on whether the expected target is lighter or
darker than the background.

A single boundary point can be involved in a number
of core atoms, each linking to a different partner on the
other side of the object. Although at first glance the search
for pairs of boundary points appears to be , hashing
individual boundary points beforehand by location yields
a large reduction in computation time [see Fig. 2(b)]. The
search area for boundary point is limited to a solid sector
surrounding the orientation of boundary point and to a
range between and . The width of the sector depends
on .

B. Extracting Local Shape Properties

Observe that collections of core atoms can group in three ba-
sic ways, corresponding to the fundamental geometric shapes
shown Fig. 3. The object boundaries are shown in dark gray
with the corresponding cores shown in light gray. Beneath each
object is the population of core atoms that would be expected
to form with such objects, the core atoms now being depicted
as simple line segments.

The sphere generates a Koosh-ball-like cloud of core atoms
with spherical symmetry and with the core atom centers
clustered at the center of the sphere. The cylinder generates
a spokes-of-a-wheel arrangement with radial symmetry along
the axis of the cylinder and the core atom centers clustered
along the axis of the cylinder. The slab results in a bed-of-
nails configuration across the slab, with the core atom centers
clustered in the midplane of the slab. The cores of these basic
objects form, respectively, a point, a line, and a plane. As
shown in Fig. 3, a system of local coordinate axes, namely,

and can be assigned in each case, although not
all the axes are unique given the symmetries involved. For
example, in the slab, and can rotate freely about .
Such a set of coordinate axes can be found for any population

Fig. 3. Fundamental shapes (dark gray), corresponding cores (light gray),
core atom populations (line segments) and eigenvectorsâ1; â2; and â3:

Fig. 4. The lambda triangle defines the domain of possible eigenvalues that
determine medial dimensionality.

of core atoms using eigenanalysis, as will be shown below.
Furthermore, the extent to which a core atom population
resembles one of the three basic configurations depends on
the corresponding eigenvalues.

Given a population of core atoms
the analysis of a given core atom population begins by
separating each core atom vectorinto its magnitude and
its orientation . We ignore, for the moment, the location
of the core atom. The analysis of the magnitudeover a
population of core atoms yields a mean and standard deviation
for the measurement of width in the underlying figure. The
orientation of core atoms in a population lends itself to
eigenanalysis, yielding measures of dimensionality and overall
orientation for the population. We develop the eigenanalysis
here in dimensions, although for the remainder of the paper

will be 3.
Given a population of core atom orientations in

dimensions, it is possible to find an-dimensional vector
that is most orthogonal to that population as a whole by

minimizing the sum of squares of the dot product between
and each individual unit vector

(3)

The matrix is positive definite symmetric and has a
unit trace. Therefore, its eigenvalues are positive and sum to
one, and its eigenvectors are orthogonal. If the eigenvalues
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(a) (b) (c)

Fig. 5. (a) Sphere. (b) Core atom cloud. (c) Sample displaced by~p:

(a) (b) (c)

Fig. 6. (a) Cylinder. (b) Core atom cloud. (c) Sample displaced by~p:

of are sorted , the corresponding
eigenvectors are the axes of a coordinate system in
which is the most orthogonal to the population as a
whole. For example, it would be the axis of the cylinder in
Fig. 3. Furthermore, the eigenanalysis guarantees thatis the
most orthogonal to the population among those directions
that are already orthogonal to. This process can be repeated
until remains the least orthogonal to the population,
representing a form of average orientation for. The axes

are thus ordered from codimensional (orthogonal to
the vector set) to dimensional (collinear with the vector set).
In 3-D, the codimensional space is that of the core itself. That
is, the space most orthogonal to the core atoms is the point,
line, or plane of the core, as shown in Fig. 3.

Returning now specifically to 3-D, the previous analysis
yields three eigenvalues which describe the dimensionality of
the core

(4)

An eigenvalue of zero means that the corresponding eigen-
vector is perfectly orthogonal to every core atom orientation

Such is the case for in the cylinder, and for both
and in the slab. In the sphere none of the eigenvectors is
completely orthogonal to the core atom population. Given the
symmetries of the three basic shapes, the eigenvalues shown
in Fig. 4 result. Notice that they sum to 1 for each shape.
Since is dependent on the other two, the system may be
viewed as having only two independent variables,and
Possible values for and are limited by and

which define a triangular domain we call the
lambda triangle(Fig. 4).

The vertices of the lambda triangle correspond to the three
basic shapes in Fig. 3, and all possible eigenvalues for any
population of core atoms fall within the triangle. A rather
crude simplification of dimensionality is possible by dividing

the triangle into three compartments to provide an integer
description of dimensionality. Arbitrary thresholds of

and will be used to divide the triangle into
such areas of integer dimensionality to clarify our experimental
results. However, it should be remembered that the underlying
parameterization of medial dimensionality is not an integer or
even a single scalar, but rather two independent scalarsand

whose values are constrained by the lambda triangle.

C. Removing the Sampling Artifact

To incorporate location, we sort core atoms by their center
points into bins on a regular 3-D lattice. Each bin thus
represents a spatial sampling of medialness. The number of
core atoms in a sample volume can be thought of as the medial
density at that location.

How do we choose an appropriate size for the sample
volume? As we shall see, the local distribution of core atoms
can have a significant cross section, and the density within
that distribution may not be uniform. To preserve resolution,
the sample volume needs to be smaller than the typical
cross-section of a core atom cloud. Generally, the core atom
population within a sample volume will not contain the entire
thickness of a cloud. Furthermore, it will demonstrate a
distortion in dimensionality as one moves out from the center
of the cloud. This is shown in Figs. 5 and 6. The vector from
the theoretical core (center of the sphere, axis of the cylinder)
to the sample volume is called the displacement vectorAs
shown in Fig. 5, a zero-dimensional core at the center of a
sphere will appear to be one-dimensional (1D) (cylindrical)
when sampled off-center. Likewise, in Fig. 6, the 1-D core of
a cylinder will appear to be 2-D (slab-like). We call a sample
that may be off-center a coronal sample.

We cannot know the actual location of the center of the
cloud from a single coronal sample, but we can combine
multiple samples in the cloud to determine its center. Again,
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Fig. 7. Ellipsoids of three coronal core atom samples coalescing at the true
center.

consider the shapes in Figs. 5 and 6. The population of
core atoms in each corornal sample will be flattened in a
plane orthogonal to and thus develop orthogonality to that
direction. We already have seen a method using eigenanalysis
to determine the direction of maximum orthogonality to a
core atom population, namely the first eigenvector. The
results of the eigenanalysis for each sample may thus be used
in a Hough-like fashion simultaneously to vote for its own
center of mass, as well as for possible samples whose corona
it may inhabit. The voting takes place within ellipsoids around
each sample volume. The axes of each ellipsoid are long in
direction(s) orthogonal to the sample of core atoms. Thus, each
ellipsoid can be expected to extend in thedirection for that
sample.

Fig. 7 demonstrates this concept. A circular cross section
through an object is shown with three coronal sample (each
containing three core atoms) displaced from the center. An
ellipsoid is associated with each sample, with the major axis
of each ellipsoid along the eigenvector most orthogonal to
the corresponding core atoms. The three ellipsoids intersect
at the center the circle. Fig. 7 can be interpreted as the cross
section of a sphere with the populations of core atoms being
cylindrical (seen in cross section) and the ellipsoids intersect-
ing at the center of the sphere (as in Fig. 5). Alternatively, it
can be interpreted as the cross section of a cylinder with the
populations of core atoms being slab like and the ellipsoids
intersecting along the axis of the cylinder (as in Fig. 6).

Various ways of constructing such ellipsoids are possible.
We have chosen the following heuristic for its simplicity. The
axes of our ellipsoid are the eigenvectors of the sample’s
matrix. The lengths of the ellipsoid’s three axes
are related to the eigenvalues as follows:

where

(5)

The scalar distanceis the mean diameter of the core atoms
in the sample and the dimensionless numberrelates to the
size of the ellipsoid, determining how many neighbors will
be reached. The ellipsoids make it possible to cluster the core
atoms for a given cloud, in effect, to coalesce the corona. Each
sample (the votee) receives votes from all the neighboring

Fig. 8. Distribution of samples in the lambda triangle for parametric test
objects.

samples whose ellipsoids overlap it. The votes from those
ellipsoids are assigned a strengthwhere

, being the number of core atoms in the voting sample and
being the ellipsoidal distance

(6)

from the center of the voter ellipsoid to the votee,being the
vector from voter to the votee. Votes are constructed to contain
information about the constituent core atom population of the
voter, including its matrix which may simply be summed
(scaled by over all votes for eigenanalysis of the entire
constituent core atom population of a particular votee. Thus
are formed clusters of core atoms that no longer suffer from
coronal distortion. The center of mass for the constituent core
atoms in a cluster, as well as their scale and dimensionality,
will tend to reflect the true core rather than any particular
coronal sample.

One expects the displacement vectorto be one of the
eigenvectors at the closest point on the theoretical core because
1) the displacement vector will be orthogonal to the core at
that point and 2) the normal to the core is always one of its
eigenvectors. In 3-D, the medial manifold can have at most
two dimensions and, thus, will always have such a normal.
At the theoretical core, the eigenvalue in the direction of the
displacement should be 13 for a sphere, 12 for a cylinder,
and 1 for a slab. As one moves out along the displacement
vector, the corresponding eigenvalue should drop toward zero
as the sample develops orthogonality to, except in the case
of the slab, in which the core atom population can be expected
to fall off rather abruptly without significant flattening.

We demonstrate these concepts using three parametric test
objects with simple geometries: a sphere, a torus, and a
spherical shell. The torus is basically a cylinder of varied and
known orientation and the spherical shell is likewise a slab of
varied and known orientation. Fig. 8 shows the eigenanvalues
of all coronal samples containing greater than 1% of the entire
core atom population, plotted on the lambda triangle. The
sphere shows two groups of samples, one near the top (sphere)
vertex of the triangle and another near the right (cylinder)
vertex, consistent with the dimensional effects of the corona
predicted in Fig. 5. The torus shows clustering near the right
(cylinder) vertex, with some spreading toward the left (slab),
consistent with the dimensional effects of the corona predicted
in Fig. 6. The spherical shell shows tight clustering at the left
(slab) vertex consistent with the observation that core atoms
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Fig. 9. Number of core atoms per sample versus displacement from the
theoretical core, showing dimensional distortion in the corona.

Fig. 10. Core atom samples (small symbols) and clustered samples (large
symbols) for parametric objects (line= slab, cross= cylinder, three-axis
symbol= sphere).

in a slab are collinear with and therefore cannot develop
significant orthogonality.

Spatial information about the samples is displayed in Fig. 9,
which plots the number of core atoms in each bin as a function
of distance from the theoretical core. In all cases, the core
atoms are concentrated near the theoretical core, i.e., the center
of the sphere, axis of the cylinder, etc. Integer dimensionality
(determined by the simple partition of the lambda triangle
shown in Fig. 4) is labeled as follows: sphere
cylinder slab. Dimensionality behaves as expected,
clearly showing the predicted distortion with displacement
from the theoretical core of the sphere and the cylinder. As
expected, the slab shows no such distortion.

The spatial distribution of core atom samples is visualized
in a different manner in Fig. 10. Each sample volume that
contains more than 1% of the total number of core atoms is
shown as a thin-lined symbol. Here, the partition of the lambda
triangle in Fig. 4 is used to decide between three possible
symbols: a slab is represented as a single line, a cylinder as

(a) (b)

Fig. 11. Endness. (a) Manifested as a cap on a cylinder. (b) Manifested as
the edge of a slab. Boundary points contributing to endness are labeledb and
eigenvectors of core atom cluster labeleda1;a2; anda3 as in Fig. 2.

a cross, and a sphere as three intersecting axes. The length of
the thin lines is constant in each test object, chosen for clarity.
The orientation of the thin lines indicates the predominant
direction(s) of core atoms in each sample, i.e., across the slab
or orthogonal to the axis of the cylinder, keeping in mind that
perfect spheres have no predominant orientation and perfect
cylinders allow for arbitrary rotation around the axis.

As expected, the sphere shows cylindrical samples in its
corona oriented toward its center. Further out from the center
a few slab-like samples reflect simply the paucity of core
atoms in those sample volumes. Near the center of the sphere,
one true spherical sample (a small three-axis symbol) may be
discerned.

The thick-lined symbols show the results of ellipsoidal
voting, i.e., they represent clusters of samples. To prevent a
cluttered illustration, votes have been tallied for all samples,
a single winner declared, and then all votes by members of
that constituency for other candidates removed. Using this
Hough credit attribution strategy, the election is then repeated
until all votes are gone. The winning clusters thus represent
nonoverlapping constituencies, and are easier to see in the
illustration. The winning clusters are represented by thick
lines in a manner similar to the samples, except the length
of the axes now corresponds to the actual mean scale of the
constituent core atoms. Thus, the thick-lined three-axis cross
in the sphere indicates its diameter. For the sphere there is
only one predominant winning cluster, with virtually every
core atom in its constituency. The torus shows cylindrical
initial samples properly oriented, but dispersed throughout the
corona. At the outer regions of the corona a few slab-like
samples are visible. The clusters, by contrast, are centered on
the circular midline of the torus. The spherical shell shows only
slab-like samples, which coalesce with ellipsoidal voting into
slab-like clusters. The orientation of the initial samples and
clustered samples are both across the local slab. Ellipsoidal
voting is seen here to perform another function, that of
connecting samples that share a core along the midplane of
a slab or along the axis of a cylinder.

D. Matching Local Shape Properties to a Medial-Node Model

The local shape properties derived from core atom clusters
are now matched against the expected properties for the object
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(a) (b) (c)

Fig. 12. (a) Conventional 2-D ultrasound uses a linear array to steer within a slice. (b) RT3D ultrasound uses a matrix array to scan a volume without moving
the transducer. (c) Two orthogonal B-mode slices, and one C-mode slice (parallel to the transducer) within the 3-D ultrasound pyramid.

sought, here the cardiac LV. These can be viewed as being
nodes in a medial-node model, in particular, the large dark
cylinder of the LV and the thin bright slab of the MV [see again
Fig. 13(a)]. Matching occurs both between individual nodes
and clusters (clusters that appear to be candidates individually
for the LV or MV) and between pairs of nodes and pairs
of clusters (pairs of clusters must have appropriate relative
distance and orientation to be an LV, MV pair). From this
population of cluster pairs, an optimum location for the LV
cylinder and MV slab can be determined, as described in more
detail in the experimental section below.

E. Extending the Axis to the LV Apex

Some attention must be paid to cases where a cylinder ends
at a cap, or a slab ends at a edge. The property of endness
has been described by Claryet al. [30]. Endness, as viewed
from the core atom perspective, is illustrated in Fig. 11. To
detect endness, clusters of core atoms can be used as vantage
points. Once a local cylinder has been established, unpaired
boundary points can be sought along the axis of the cylinder, in
either direction, as evidence of a cap on the cylinder. Similarly,
once a local slab has been found, unpaired boundary points
indicating an edge to the slab can be sought.

In the particular application of detecting the AMV axis, the
direction of the cylinder is determined by the line between
the optimally placed LV and MV nodes. Extending this line
toward the apex of the LV permits detection of boundary points
contributing to the cap of the cylinder, as described in more
detail in the experimental section below.

III. EXPERIMENTAL VALIDATION

A. Identifying the AMV Axis

In this section we experimentally validate the above method
and demonstrate its ability to automatically identify the AMV
axis of the LV. No preprocessing of the data was performed.
Boundariness was found using a difference of Gaussian mea-
surement of intensity gradient, with Gaussian application ac-
complished by repeated convolution with a 22 2 binomial
kernel and with further constraints applied as to the absolute
intensity of the boundary point.

To identify the cylinder in the image data, boundary points
were determined with four applications of the binomial kernel.
Core atoms with diameters 0.8–4.6 cm and face to faceness
greater than 0.88 [see (2)] were collected in bins on a regular
lattice and ellipsoidal voting applied. An example of the result-
ing clusters is displayed in Fig. 13(b). Crosses are shown in the
cylindrical chamber of the ventricle. Due to the preselection
of core atoms by scale, no other significant densities of core
atoms were found. A single intensity constraint could not be
found to reliably identify the endocardial boundary, because
the intensity varied between images extending into the range of
the outer boundary between the myocardium and surrounding
connective tissue (epicardium or septum). However, since this
outer boundary also formed a cylinder roughly concentric to
that of the endocardial boundary, core atoms forming from
the outer boundary established approximately the same axis
for the LV.

Next, the MV was sought. Boundary points were determined
as above, but with only two applications of the binomial kernel
to accommodate the finer structure of the MV. Core atoms
with diameters 0.0–0.8 cm and face-to-faceness greater than
0.55 were collected. The lower threshold for face to faceness
was necessary because of the smaller size of the core atoms.
As shown in Fig. 13(c), the densest clusters formed at the
center of the MV, although weaker false targets were also
detected in the myocardium off to the side of the ventricle.
To eliminate these false targets, a criterion was established
for the formation of appropriate pairs of clusters. Only slab-
like clusters appropriately located and oriented with respect to
cylindrical clusters were accepted. These pairs were allowed to
vote for their constituent clusters and the mean location of the
winning clusters used to establish a single MV location and
a single LV cylinder location. The vector between these two
locations was used to establish a cone for expected unpaired
boundary points at the apex of the LV and the mean distance
to such apical boundary points used to determine the location
of the apical cap along that vector. Thus, an AMV axis was
established, as shown in Fig. 13(d).

The entire procedure that produced Fig. 13(b)–(d) was au-
tomatic and required approximately 10 s per 3-D scan on a
400-MHz Pentium computer (each scan holds approximately
2 million 8-bit voxels).
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(a) (b)

(c) (d)

Fig. 13. Using a statistical model of medial primitives to automatically identify the axis of the cardiac left ventricle in RT3D ultrasound data. (a) Model of
left ventricle and MV. (b) Cylinder of ventricle. (c) Slab of MV. (d) Automated AMV axis (scale of 1 cm is shown).

The anatomical end-points of the AMV axis (the ventricular
apex and the center of the MV) were also determined manu-
ally. A human operator was instructed to follow the general
cylindrical shape of the left ventricle, marking the ventricular
apex and the center of the MV on B-mode and C-mode slices.
Manual identification of these landmarks was conducted first,
and then the automated analysis performed just once without
any adjustment of parameters.

The data included 18 RT3D scan sequences ofin vivo
human hearts, using a Volumetrics Model-1 scanner operating
at 2.5 or 3.5 MHz. Of the 18 sequences, 12 were described
as normal, four as dilated cardiomyopathy, one as akinetic,
and one as pericardial effusion. In each sequence, only scans
in which the MV was closed were used, for a total of 155
scans. All parameters for the method were established during
its developing using several normal sequences, none of which
were included in these 18 sequences.

The locations of the manual end points were compared to
those determined automatically for all 155 scans, as shown
in Fig. 14(a) and (b). The error reported is simply the total
physical distance (cm) in three dimensions between the manual
and automated end points. For reference, a scale of 1 cm is
marked on the cardiac scan in Fig. 13(d), with the pyramid
of a typical scan having a height of approximately 15 cm. As
can be seen in Fig. 14(a), for most scans the center of the MV
was correctly located within 2 cm (rms error 1.2 cm). The
greatest error was slightly more than 3 cm. For the apex of

Fig. 14. (a) Error (cm) between manual and automated placement of MV
end-point of AMV axis for all 155 3-D ultrasound scans. (b) Error between
manual and automated placement of apical end-point of AMV axis, for all
155 scans. (c) Error for the apical end-point for a random subset of 65 scans
corrected for bias measured in the remaining 90 scans, reducing the rms error
from 1.4 to 0.7 cm. (See Fig. 15(d) for scale of 1 cm.)

the left ventricle, the greatest error was approximately 2.5 cm
(rms error 1.4 cm).

These errors were improved by eliminating a consistent bias
between manual and automated measurements. The scans were
divided blindly into two groups (training and experimental)
without regard to image quality, distributing normal and ab-
normal hearts evenly, and placing the akinetic and pericardial
effusion scans in the experimental group. Error for the LV
apex is displayed in Fig. 14(c), with only the experimental
group (65 scans) shown, corrected for bias observed in the
training group (90 scans). Correcting for bias yielded an rms
error of 0.7 cm ( cm, cm, cm)
for placement of the LV apex, and 1.1 cm ( cm,

cm, cm) for the MV. The automated
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placement of the LV apex tended to be further into the
ventricular chamber (average of 1.2 cm further away from the
transducer) than the manual measurement. This bias may be
due to greater local curvature at the LV apex than would have
been expected from the simple model of an untapered cylinder
with a hemispherical cap, since a typical LV actually narrows
considerably as it approaches the apex. Another possible
explanation for the bias is that the axis, as determined by the
LV and MV clusters, is not centered perfectly as it extends
into the apex, leading to contact along the wall rather than
at the apex. Other sources of error include sampling in the
boundary detection and ambiguities in the correct location of
the landmarks by manual placement.

B. Measuring Balloon Volume in 3-D Ultrasound Data

The previous section demonstrates the core atoms’ ability to
identify anatomical structures in noisy cluttered images. It is
expected that core atoms will also be useful in making mea-
surements of diameter and related geometric parameters. In
this section, we demonstrate the ability to accurately measure
volume of real objects in 3-D ultrasound data.

We used a series of seven balloons filled with an
ethanol–water mixture of known density. The volume of
the balloons was determined by weight, ranging from 58.0 ml
to 83.1 ml. The balloons were scanned in a bath of the
same mixture using the prototype RT3D ultrasound scanner
developed at Duke University known as T4. Boundariness
was found, as in the previous section, using a difference of
Gaussian, with six applications of the binomial kernel. Core
atoms with lengths ranging from 2.3 to 7.8 cm and face
to faceness of greater than 0.88 were collected from each
scan. A center of mass was computed for all core atoms
in each scan. The majority of core atoms formed a roughly
spherical Koosh-ball configuration as predicted in Fig. 3. An
actual example of clusters from a balloon is shown in Fig. 16.
Volume measurement could be performed simply by selecting
core atoms within 1 cm of the center of mass of all core atoms
in the image, since the image was uncluttered by other targets.
The mean length of these core atoms (divided by two) yielded
an effective radius from which a volume was calculated
using . This automatically determined volume
was compared to balloon volume determined by weight.

A complication arose because the skin of a balloon in
ultrasound presents a dark–light–dark ridge in intensity rather
than a single dark–light transition. This causes boundary points
to change orientation as one crosses the skin of the balloon.
Using the inward facing boundary points to form core atoms
yields a smaller radius than expected, while using the outward
facing boundary points (by switching the polarity, defined
in Section II-A) yields a larger radius than expected. These
results for the two cases are markedand , respectively,
in Fig. 15.

An optimum weighted average radius
was computed from the inner radius and the outer radius

, by minimizing the rms percent error between the resulting
calculated volume and that determined by weight, for the set
of seven balloons. The optimum value forwas 0.38, favoring
the outward facing boundary points, yielding an rms percent

Fig. 15. Radius of fluid-filled balloons determined automatically using core
atoms to analyze 3-D ultrasound images, compared to radius of the same
balloons determined by weight assuming a spherical shape.(x) outer facing
boundary,(+) inner facing boundary,(o) weighted average of inner and
outer boundaries, with weight determined to minimize rms percent error by
volume to 6.5%.

Fig. 16. Core atom clusters in balloon (from the inside boundary of the
intensity ridge) identified as cylindrical along the axis of the balloon, although
a significant number of core atoms actually formed vertically through the
balloon as well.

error by volume of 6.5%, which agrees favorably with previous
measurements on the same balloons using a Hough transform
[18]. The weighted average radii (markedin Fig. 15) yielded
a linear regression (dotted line) close to unity (slope1.03,
intercept 0.081 cm).

This measurement of balloon volume was completely au-
tomated and took advantage of the fact that many individual
measurements were combined statistically. In a sense, each
core atom serves as a yardstick crossing the sphere near the
center. Since, generally, the selected core atoms are chords of
the sphere and not true diameters [as shown in Fig. 5(c)], they
can be expected to underestimate the actual diameter. This
may explain the bias toward the outer surface in optimum
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value for . Another reason for this bias may be that the
balloons were generally ellipsoidal with a single major axis
along the ultrasound beam, producing a propensity for shorter
core atoms across the two minor axes.

IV. CONCLUSIONS

We have described a new method for identifying anatom-
ical structures using fundamental properties of local shape,
extracted statistically from populations of medial primitives,
and have demonstrated the feasibility of using this method
to identify and measure shapes under challenging conditions.
The balloon experiment demonstrated the ability of core atoms
to accurately measure a roughly spherical target with an
uncluttered background. Identification of the left ventricular
axis in 3-D ultrasound data using a model with three nodes
has also been demonstrated.

The bottom-up approach of our method based on image
properties may offer advantages over top-down approaches
such as deformable surfaces. We still employ a model, but
simply apply it at a higher more abstract level. This may
provide a more robust and efficient fully automated system
especially in noisy data.

Present directions in our research include determining ven-
tricular volume using the medial-node model of the LV axis,
and constructing more complicated medial-node models for
the heart and other anatomical structures, as well as using
other imaging modalities besides RT3D ultrasound. We are
introducing variability into the model to reflect normal and
pathologic variation in anatomy, extending the method to the
spatio-temporal domain, and applying the approach to new
methods of visualization. Finally, work is underway to increase
the flexibility of initial boundariness detection by providing
multiple adaptable boundary profiles and to automatically de-
velop optimal medial-node models directly from training sets.
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